Linux性能優化實戰 ••• 39 | 案例篇:怎么缓解 DDoS 攻击带来的性能下降问题? 導讀:Earou Huang ## 什麼是 DDoS? (Distributed Denial of Service) DDoS 的前身是 DoS (Denail of Service) 即拒绝服务攻击,指利用大量的合理请求,来占用过多的目标资源,从而使目标服务无法响应正常请求。 ## 三種做法 x 不同的 Layer - L3 的合法請求 - L4 的合法請求 - L7的合法請求 耗盡頻寬 耗盡 OS資源 耗盡 ### 三種做法 X 針對 L3 設計的攻擊 - Ping flood - Smurf attack - Ping of death 耗盡 頻寬 **耗**壶 OS資源 L3 的合法請求 - L4 的合法請求 - L7的合法請求 耗盡 三種做法x 針對 L4 設計的攻擊 - SYN flood - UDP flood 耗盡 頻寬 耗盡 OS資源 - L3 的合法請求 - L4 的合法請求 - L7的合法請求 TCP/UDP 耗盡 ### 三種做法x 針對 L7 設計的攻擊 - HTTP flood - DNS 攻撃 - 族繁不及備載 - ▶ L3 的合法請求 - L4 的合法請求 - L7的合法請求 HTTP等一 大堆 耗盡 頻寬 耗盡 OS資源 耗盡 | Attack Possibilities by OSI Layer | | | | | | | | | | |-----------------------------------|-----------------------------|--|--|---|--|--|--|--|--| | OSI Layer | Protocol Data
Unit (PDU) | Layer Description | Protocols | Examples of Denial of Service
Techniques at Each Level | Potential Impact of DoS
Attack | Mitigation Options for Attack Type | | | | | Application
Layer (7) | Data | Message and packet creation
begins. DB access is on this
level. End-user protocols such as
FTP, SMTP, Tehnet, and RAS
work at this layer | Uses the Protocols FTP,
HTTP, POP3, & SMTP
and its device is the
Gateway | PDF GET requests, HTTP GET,
HTTP POST, = website forms
(login, uploading photo/video,
submitting feedback) | Reach resource limits of
services Resource
starvation | Application monitoring is the practice of monitoring software applications using a dedicated set of algorithms, technologies, and approaches to detect zero day and application layer (Layer 7 attacks). Once identified these attacks can be stopped and traced back to a specific source more easily than other types of DDoS attacks | | | | | Presentation
Layer (6) | Data | Translates the data format from sender to receiver | Uses the Protocols
Compression & Encryption | Malformed SSL Requests Inspecting SSL encryption packets is resource intensive. Attackers use SSL to tunnel HTTP attacks to target the server | The affected systems
could stop accepting SSL
connections or
automatically restart | To mitigate, consider options like offloading the
SSL from the origin infrastructure and
inspecting the application traffic for signs of
attacks traffic or violations of policy at an
applications delivery platform (ADP). A good
ADP will also ensure that your traffic is then re-
encrypted and forwarded back to the origin
infrastructure with unencrypted content only
ever residing in protected memory on a secure
bastion host | | | | | Session (5) | Data | Governs establishment,
termination, and sync of session
within the OS over the network
(ex: when you log off and on) | Uses the Protocol
Logon/Logoff | Telnet DDoS-attacker exploits a
flaw in a Telnet server software
running on the switch, rendering
Telnet services unavailable | Prevents administrator
from performing switch
management functions | Check with your hardware provider to
determine if there's a version update or patch to
mitigate the vulnerability | | | | | Transport (4) | Segment | Ensures error-free transmission
between hosts: manages
transmission of messages from
layers 1 through 3 | Uses the Protocols TCP & UDP | SYN Flood, Smurf Attack | Reach bandwidth or
connection limits of hosts
or networking equipment | DDoS attack blocking, commonly referred to as backholing, is a method typically used by ISPs to stop a DDoS attack on one of its customers. This approach to block DDoS attacks makes the site in question completely inaccessible to all traffic, both malicious attack traffic and legitimate user traffic. Black holding is typically deployed by the ISP to protect other customers on its network from the adverse effects of DDoS attacks such as slow network performance and disrupted service | | | | | Network (3) | Packet | Dedicated to routing and
switching information to different
networks. LANs or internetworks | Uses the Protocols IP,
ICMP, ARP, & RIP and
uses Routers as its device | ICMP Flooding - A Layer 3
infrastructure DDoS attack
method that uses ICMP
messages to overload the targeted
network's bandwidth | Can affect available
network bandwidth and
impose extra load on the
firewall | Rate-limit ICMP traffic and prevent the attack
from impacting bandwidth and firewall
performance | | | | | Data Link (2) | Frame | Establishes, maintains, and
decides how the transfer is
accomplished over the physical
layer | Uses the Protocols 802.3 &
802.5 and it's devices are
NICs, switches bridges &
WAPs | MAC flooding inundates the network switch with data packets | Disrupts the usual sender
to recipient flow of data
blasting across all ports | Many advances switches can be configured to limit the number of MAC addresses that can be learned on ports connected to end stations; allow discovered MAC addresses to be authenticated against an authentication, authorization and accounting (AAA) server and subsequently filtered | | | | | Physical (1) | Bits | Includes, but not limited to cables, jacks, and hubs | Uses the Protocols 100Base
T & 1000 Base-X and uses
Hubs, patch panels, & RJ45
Jacks as devices | Physical destruction, obstruction,
manipulation, or malfunction of
physical assets | Physical assets will
become unresponsive and
may need to be repaired to
increase availability | Practice defense in-depth tactics, use access controls, accountability, and auditing to track and control physical assets | | | | https://us-cert.cisa.gov/sites/default/files/publications/DDoS%20Quick%20Guide.pdf Open port. Waiting for 'ACK'. Connections exhausted #### Lab ### Takeaway 討論題 - 如果有人問,你所維運的服務能抵抗 DDoS 的能力到什麼程度,如何 回答? - 如何分辨是 **DDoS** 還是 **真正大量的使用者**? - 如何適當監控?(L3, L4, L7) # Addendum | Topic | Metric | Description | | | |------------------------|-----------------------------|--|--|--| | AWS Shield
Advanced | DDoSDetected | Indicates a DDoS event for a specific Amazon Resource Name (ARN). | | | | AWS Shield
Advanced | DDoSAttackBitsPerSecond | The number of bytes observed during a DDoS event for a specific Amazon Resource Name (ARN). This metric is only available for layer 3/4 DDoS events. | | | | AWS Shield
Advanced | DDoSAttackPacketsPerSecond | The number of packets observed during a DDoS event for a specific Amazon Resource Name (ARN). This metric is only available for layer 3/4 DDoS events. | | | | AWS Shield
Advanced | DDoSAttackRequestsPerSecond | The number of requests observed during a DDoS event for a specific Amazon Resource Name (ARN). This metric is only available for layer 7 DDoS events and is only reported for the most significant layer 7 events. | | | | AWS WAF | AllowedRequests | The number of allowed web requests. | | | | AWS WAF | BlockedRequests | The number of blocked web requests. | | | | AWS WAF | CountedRequests | The number of counted web requests. | | | | Amazon
CloudFront | Requests | The number of HTTP/S requests | | | | Amazon
CloudFront | TotalErrorRate | The percentage of all requests for which the HTTP status code is 4xx or 5xx. | | | | Amazon
Route 53 | HealthCheckStatus | The status of the health check endpoint. | | | | Topic | Metric | Description | |-------|--|--| | ALB | ActiveConnectionCount | The total number of concurrent TCP connections that are active from clients to the load balancer, and from the load balancer to targets. | | ALB | ConsumedLCUs | The number of load balancer capacity units (LCU) used by your load balancer. | | ALB | HTTPCode_ELB_4XX_Count
HTTPCode_ELB_5XX_Count | The number of HTTP 4xx or 5xx client error codes generated by the load balancer. | | ALB | NewConnectionCount | The total number of new TCP connections established from clients to the load balancer, and from the load balancer to targets. | | ALB | ProcessedBytes | The total number of bytes processed by the load balancer. | | ALB | RejectedConnectionCount | The number of connections that were rejected because the load balancer had reached its maximum number of connections. | | ALB | RequestCount | The number of requests that were processed. | | ALB | TargetConnectionErrorCount | The number of connections that were not successfully established between the load balancer and the target. | | ALB | TargetResponseTime | The time elapsed, in seconds, after the request left the load balancer until a response from the target was received. | | ALB | UnHealthyHostCount | The number of targets that are considered unhealthy. | | Topic | Metric | Description | | |---------------|-----------------|--|--| | NLB | NewFlowCount | The total number of new TCP flows (or connections) established from clients to targets in the time period. | | | NLB | ProcessedBytes | The total number of bytes processed by the load balancer, including TCP/IP headers. | | | Auto Scaling | GroupMaxSize | The maximum size of the Auto Scaling group. | | | Amazon
EC2 | CPUUtilization | The percentage of allocated EC2 compute units that are currently in use. | | | Amazon
EC2 | NetworkIn | The number of bytes received by the instance on all network interfaces. | | | NLB | ActiveFlowCount | The total number of concurrent TCP flows (or connections) from clients to targets. | | | NLB | ConsumedLCUs | The number of load balancer capacity units (LCU) used by your load balancer. | | ### 如何判斷何時告警? 截圖自:文科生也看得懂的工作用統計學 ### **Amazon CloudWatch Anomaly Detection**